DarkSide-50 Results with UAr

Masayuki Wada
Princeton University
on behalf of the DarkSide Collaboration
23 Nov. 2015

Outline

- Introduction to Direct Detection of Dark Matter
- DarkSide Program
- DarkSide-50
- Physics result with Atmospheric Argon (AAr)
- Physics result with Underground Argon (UAr)

Evidence for Dark Matter

Evidence for Dark Matter

Dark Matter Properties

ELEMENTARY PARTICLES

- Gravitationally interacting
- Stable particle
- Not Hot

Not Baryon (Big Bang nucleosynthesis)

Beyond Standard Model!!

One of the most physics motivated candidates is Weak Interacting Massive Particles (WIMP).

Why WIMP?

Thermal Relic (WIMP miracle)

Thermal Relic

When T < m, χ decay exponentially.

Thermal Relic

When $\Gamma = H$, χ can not find each other.

$$\Gamma = n(x)\langle \sigma v \rangle \Rightarrow n_f(x) = H/\langle \sigma v \rangle$$

Weak-scale cross section reproduces the relic abundance of DM expected from Λ CDM.

New Physics at Electroweak scale?

- Higgs Hierarchy problem also indicates new physics at electron week scale for Higgs to be at 125 GeV/ c², otherwise Higgs would be much heavier (~10¹⁸ GeV/c², the Planck mass).
- New physics at week scale can solve both problems.

Detecting WIMPs

Direct Detection Rates

R (events/kg/yr) =
$$\langle \Phi_\chi \cdot \sigma_{\chi-N} \rangle \cdot n$$

$$\Phi_\chi$$
 Flux of WIMPS

$$\sigma_{\chi-N}$$
 WIMP-Nucleus Scattering Cross Section

Surrounded by a Dark Matter Halo

$$\Phi(v) = \frac{\rho_{\chi}}{m_{\chi}} v_{\chi} f(v_{\chi}, t)$$

Local density ~ 0.3 GeV/cm³ (5x10⁻²⁵ g/cm³)

Maxwellian Velocity Distribution Local speed ~ 220 km/s Escape Velocity ~ 500 - 600 km/s

R (events/kg/yr) =
$$\langle \Phi \cdot \sigma \rangle \cdot n$$

WIMP - Nucleus SI Scattering Cross-Section

Mass number of nucleus (assumes same interaction for neutrons and protons)

Nuclear Form Factor
Correction for
decoherence at
non-zero
momentum transfer

Interaction Rates

 m_{χ} : 10 GeV, $\sigma_{\chi-n}$: 10⁻⁴⁵ cm²

 m_{χ} : 100 GeV, $\sigma_{\chi-n}$: 10⁻⁴⁵ cm²

arXiv:1310.8327v2 [hep-ex]

Total Interaction Rate for Ar ~ 10⁻⁴ evt/kg/day Rock Natural Radioactivity ~ 10⁷ evt/kg/day

DarkSide Program

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from backgrounds (both from neutrons and β/γ's)

DarkSide Program

Multi-stage program at Gran Sasso National Laboratory in Italy

DarkSide 10 Prototype detector

DarkSide 50
First physics detector
Commissioned Oct.2013

DarkSide-20k

30 tonne (20 tonne fiducial depleted argon detector proposed to LNGS for operations within **2020**)

DarkSide 50

Radon-free Assembly

Clean Room

1,000-tonne Water-based Cherenkov **Cosmic Ray Veto**

30-tonne Liquid Scintillator Neutron and y's Veto

Inner detector **TPC**

Two Phase Argon TPC

Drift Field

DS50 has been operating at a drift field of 200 V/cm and an extraction field of 2.8 kV/cm

Anode: 0 V

E_{gas}: 4200 V/cm

E_{ext}: 2800 V/cm

Grid: -5600 kV

Edrift: 200 V/cm

Cathode: -12700 V

Stable operation for two years at -12700 V

Max Drift Time ~ 370 us

Electron Drift Lifetime > 5ms

Two Phase Argon TPC

Nuclear Recoil excites and ionizes the liquid argon, producing scintillation light (S1) that is detected by the photomultipliers

Detecting WIMPs

The ionized electrons that survive recombination are drifted towards the liquid-gas interface by the electric field.

Electron drift lifetime > 5 ms, compared to max. drift time of \sim 375 μ s

Electron drift speed = $0.93 \pm 0.01 \text{ mm/}\mu\text{s}$

Detecting WIMPs

The electrons are extracted into the gas region, where they induce electroluminescence (S2)

- The time between the S1 and S2 signals gives the vertical position.
- x-y position of events are reconstructed from fraction of S2 in each PMT.

Backgrounds

[30-200] keVr

ELECTRON RECOILS

39Ar ~9x10⁴ evt/kg/day

γ ~1x10² evt/kg/day

NUCLEAR RECOILS

~30 evt/m²/day

Radiogenic n ~6x10⁻⁴ evt/kg/day

 α ~10 evt/m²/day

39**A**r

- Intrinsic ³⁹Ar radioactivity in atmospheric argon is the primary background for argon-based detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is ineffective)
- 39Ar is a cosmogenic isotope, and the activity in argon from underground sources can be significantly lower compared to atmospheric argon
- Recently DarkSide deployed underground argon. Update will be at the end of this talk.

arXiv:1204.60111 [physics.ins-det]

Pulse Shape Discrimination

Electron and nuclear recoils produce different excitation densities in the argon, leading to different ratios of singlet and triplet excitation states

Pulse Shape Discrimination

F90: Ratio of detected light in the first 90 ns, compared to the total signal ~ Fraction of singlet states

 $\tau_{\text{singlet}} \sim 7 \text{ ns}$ $\tau_{\text{triplet}} \sim 1500 \text{ ns}$

Discrimination power strongly dependent on light collection

S2/S1

Electron and nuclear recoils produce different ionization densities that lead to different fractions of electrons that survive recombination

Ratio of ionization and scintillation signal (S2/S1) can be used to distinguish between the two populations

Multiple Interactions

Expected	Background Rejection	Backgrounds
WIMP signal	Technique	Removed
Single Interaction	Multiple S2 Cut in TPC Liquid Scintillator Veto	Neutrons, Gamma rays

Liquid Scintillator Veto

Liquid scintillator allows coincident veto of **neutrons** (and γ's) in the TPC and provides *in situ* measurement of the neutron background rate

- 4 m diameter sphere containing PC + TMB scintillator
- Instrumented with 110 8" PMTs

Odd time structure: ¹⁴C content is too high (~98% efficiency) to achieve design efficiency (~99.5%) after the first fill.

The TMB was replaced with new low ¹⁴C TMB (Jan. 2015). ¹⁴C activity decreased from **150 kBq** to **0.3 kBq**.

External Water tank

- 80 PMTs within water tank
 (11 m diameter x 10 m height)
- Acts as a muon and cosmogenic veto
 (~ 99% efficiency)
- Provides passive γ's and neutron shielding

Radon-Free Clean Rooms

Radon daughters plate out on surfaces of the detector causing dangerous alpha-induced nuclear recoils.

Final preparation, cleaning, evaporation and assembly of all inner detector parts was carried out in radon-free clean rooms.

Typical radon in air ~ 30 Bq/m³
Cleanroom radon levels < 5 mBq/m³

DS50 Commissioning

TPC Calibration

TPC: Electric Recoils calibration

- ³⁹Ar (565 keV_{ee} endpoint) present in AAr
- 83mKr gas deployed into detector (41.5 keV_{ee})

Fits to ³⁹Ar and ^{83m}Kr spectrum indicate

LIGHT YIELD: 7.9 \pm 0.4 PE/keV_{ee} at zero field and 7.0 \pm 0.3 PE/keV_{ee} at 200 V/cm

SCENE

(Scintillation Efficiency of Nuclear Recoils in Noble Elements)

⁷Li(p, n)⁷Be reaction produces low energy monoenergetic neutrons TOF measurement between target, LAr and organic scintillators allows clean identification of elastic neutron interactions of known energy

CALIS - CALibration Insertion System

Calibrate both **TPC** and **Neutron veto**

- Gamma sources: ⁵⁷Co (122 keV), ¹³³Ba (356 keV), ¹³⁷Cs (663 keV)
- Neutron source: AmBe w/ and w/o collimator
- Different drift fields: null, 100 V/cm, 150 V/cm, 200 V/cm

NR from AmBe source

NR band study (crosscheck of SCENE data).

Deep test of the GEANT4 MC code.

NR band matches with the points extrapolated from SCENE.

Neutron Capture (Veto)

Veto efficiency from capture signal > 99% (from calibrations and simulations)

- ~7.7% of capture on 1 H; 2.2 MeV γ lost ~8%
- ~0.05% of neutrons leave no signal in LSV at all

Total Veto efficiency is larger due to additional thermalization signal

Due to low background, only ~0.9% acceptance loss with 1 PE threshold

DS50 Timeline

- Oct. 2013: LArTPC, Neutron Veto and Muon Veto commissioned.
 - TPC filled with atmospheric argon (AAr).
- **Up to June 2014:** data taken with high ¹⁴C content in LSV.
 - 47.1 live days (1422 kg day fiducial) for the first physics result.
 - TMB (¹⁴C) was removed to reduce the ¹⁴C rate.
- Oct. to Dec. 2014: Calibration of TPC w/ radioactive sources.
- Jan. 2015: Add radiopure TMB at 5% concentration.
- Mar. to Apr. 2015: Fill with UAr and re-commissioning the detector.
- Apr. to Aug. 2015: Accumulate data with UAr for dark matter search.

The First Physics Result from DS-50

Background-free exposure of 1422 ± 67 kg·day

Phys. Lett. B 743 (2015) 456

Selected only single-hit interactions in the TPC fiducial volume (36.9 kg) with no energy deposition in the veto

Background-free exposure of 1422 ± 67 kg·day

Selected only single-hit interactions in the TPC fiducial volume (36.9 kg) with no energy deposition in the veto

Dark Matter exclusion plot

This is the most sensitive dark matter search performed with an **argon** target. The WIMP-nucleon spin-independent cross section is 6.1×10^{-44} cm² for a WIMP mass of 100 GeV/c².

Underground Ar

1. Extraction at Colorado (CO₂ We^{III})

Six Years Effort Extract a crude argon gas mixture '

and He)

UAr bottles at LNGS

3. Arrived at LNGS Ready to fill into DS-50

Distillation Column at **Fermilab**

UAr First Results

AAr vs UAr. Live-time-normalized S1 pulse integral spectra at Zero field.

39Ar reduction factor of ~1400!

Low level of ³⁹Ar allows extension of DarkSide program to ton-scale detector.

UAr First Results

71 live-days after all cuts. (2616±43) kg day exposure. Single-hit interactions in the TPC, no energy deposition in the veto.

UAr First Results w/ S2/S1 cut

We have another discrimination power to suppress ERs (S2/S1 cut w/ 50% acceptance of NRs).

UAr First Results

Best limit to date, with argon target, third best limit behind LUX & Xenon100.

Future Detectors

DS-20k

ARGO

30 tonne (20 tonne fiducial) detector

300 tonne (200 tonne fiducial) detector

Requirements for DS-20k

Neutron Background:

- Cosmogenic: Veto system
- Radiogenic: radiopure SiPM & ultra-clean Titanium (TPC cryostat)

β/γ background:

- ³⁹Ar: Underground Argon (Urania Project) & Depleted Argon (Aria Project)
- y: SiPM & ultra-clean Titanium

Further Depletion of Ar

Urania (Underground Argon):

 Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 100 kg/day of Underground Argon

 Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon

Experiment	σ [cm ²] θ 1 TeV/c ²	σ [cm ²] @10 TeV/c ²				
LUX [10k kg×day Xe]	1.1×10 ⁻⁴⁴	1.2×10 ⁻⁴³				
XENON [7.6k kg×day Xe]	1.9×10 ⁻⁴⁴	1.9×10 ⁻⁴³				
DS-50 [1.4k kg×day Ar]	2.3×10 ⁻⁴³	2.1×10 ⁻⁴²				
ArDM [1.5 tonne×yr Ar]	8×10 ⁻⁴⁵	7×10 ⁻⁴⁴				
DEAP-3600 [3.0 tonne×yr Ar]	5×10 ⁻⁴⁶	5×10 ⁻⁴⁵				
XENON-1ton [2.7 tonne×yr Xe]	3×10 ⁻⁴⁶	3×10 ⁻⁴⁵				
LZ [15 tonne×yr Xe]	5×10 ⁻⁴⁷	5×10 ⁻⁴⁶				
DS-20k [100 tonne×yr]	9×10 ⁻⁴⁸	9×10 ⁻⁴⁷				
1 Neutrino Event [400 tonne×yr Ar or 300 tonne×yr Xe]	2×10 ⁻⁴⁸	2×10-47				
ARGO [1,000 tonne×yr]	9×10 ⁻⁴⁹	9×10 ⁻⁴⁸				

Expected sensitivity

DarkSide-20k and Argo Lol Signatories

- D. Franco, A Tonazzo APC Paris
- D. Alton Augustana College
- A. Kubankin Belgorod National Research University
- K. Keeter, B. Mount Black Hills State University
- L. Romero, R. Santorelli CIEMAT
- S. Horikawa, K. Nikolics, C. Regenfus,
- A. Rubbia ETH Zürich
- S. Pordes Fermilab
- A. Gola, C. Piemonte FBK & TIFPA
- S. Davini GSSI
- E. Hungerford, A. Renshaw University of Houston
- M. Guan, J. Liu, Y. Ma, C. Yang, W. Zhong IHEP Beijing
- N. Canci, F. Gabriele, G. Bonfini, A. Razeto, N. Rossi,
- F. Villante LNGS
- C. Jollet, A. Meregaglia IPHC Strasbourg
- M. Misziazek, M. Woicik, G. Zuzel Jagiellonian University
- K. Fomenko, A. Sotnikov, O. Smirnov JINR
- M. Skorokhvatov Kurchatov Institute Moscow
- A. Derbin, V. Muratova, D. Semenov,
- E. Unzhakov PNPI Saint Peterburg
- S. De Cecco, C. Giganti LPNHE Paris
- H. O. Back PNNL
- M. Ghioni, A. Gulinatti, L. Pellegrini, I. Rech, A. Tosi,

- F. Zappa Politecnico di Milano
- C. Galbiati, A. Goretti, A. lanni, P. Meyers,
- M. Wada Princeton University
- A. Chepurnov, G. Girenok, I. Gribov, M. Gromov,
- I. Zilcov SINP MSU Moscow
- C.J. Martoff, J. Napolitano, J. Wilhelmi Temple University
- **E. Pantic UCDavis**
- Y. Suvorov, H. Wang UCLA
- A. Pocar UMass Amherst
- A. Machado, E. Segreto Campinas
- A. Devoto, M. Lissia, M. Mascia,
- S. Palmas Università & INFN Cagliari
- M. Pallavicini, G. Testera,
- S. Zavatarelli Università & INFN Genova
- D. D'Angelo, G. Ranucci Università & INFN Milano
- F. Ortica, A. Romani Università & INFN Perugia
- S. Catalanotti, A. Cocco, G. Covone, G. Fiorillo,
- B. Rossi Università Federico II & INFN Napoli
- C. Dionisi, S. Giagu, M. Rescigno Università La Sapienza & INFN Roma
- S. Bussino, S. Mari Università & INFN Roma 3
- J. Maricic, R. Milincic, B. Reinhold University of Hawaii
- P. Cavalcante Virginia Tech

Summary

Background free

³⁹Ar BG from **47.1 live days** (1422 kg · day fiducial) of AAr corresponds to that expected in **38.7 years** of **UAr** DS-50 run (»planning physics run time, 3 years).

- Concentration of ³⁹Ar in UAr is 1400 times lower than in AAr.
- With the BG-free exposure of 1422 kg · day fiducial and depletion factor of 1400, DarkSide demonstrates ³⁹Ar BG rejection at level of 5.5 tonne·year with UAr.
- Future detectors are planned and Letter of Intent was submitted to LNGS April 27 2015. Proposal is under submission to NSF and INFN.

THE END

UAr First results (Field On)

UAr cocktail fit

The radioactivities from fit match with expected activities.

³⁷Ar

³⁷Ar is activated by cosmic rays. Only 35 day half life Provide **low energy (~2-3 keV) calibration point**.

85Kr Contamination

99.57% decay via β (678 keV)

0.43% decay via β (173 keV) + delayed γ (514 keV) Measured meantime 1.64 μ s in DS-50

Rate in two branches (BR corrected)

 $35.3 \pm 2.2 \text{ cpd}$

 $33.1 \pm 0.9 \text{ cpd}$

Event Position in TPC

Data from SCENE and the plots

- Left: the median of the f90 distribution for nuclear recoils as a function of energy as measured in the SCENE experiment
- Right: the quenching factor for nuclear recoils as measured by the SCENE experiment

Kr calibration data is used for cross calibration of light yield between DS50 and SCENE.

Status of Liquid Scintillator Veto

¹⁴C activity decreased from 150 kBq to 0.3 kBq.

Neutron Veto Commissioning

Coincident event in TPC and Neutron Veto

Light Yield: liquid scintillator VETO LY of about 0.5 PE/keVee, satisfactory for VETO requirements.

Borated Liquid Scintillator

- High neutron capture cross section on boron allows for compact veto size
- Capture results in 1.47 MeV a particle detected with high efficiency
- Short capture time (2.3 µs) reduces dead time loss

	Veto Efficiency (MC)
Radiogenic Neutrons	> 99%*
Cosmogenic Neutrons	> 95%

Nuclear Instruments and Methods A 644, 18 (2011)

DarkSide-20k

20-tonnes fiducial dark matter detector start of operations at LNGS within 2020 100 tonnexyear background-free search for dark matter

20-	15	16	17	18	19	20	212	22	23	24	25	26	27	28	29	30	31	32	33	34
DS-20k																				
ARGO																				

Argo

300-tonnes depleted argon detector start of operations at LNGS within 2025 1,000 tonnexyear background-free search for dark matter precision measurement of solar neutrinos